Skip to main content
Product image not found

MAJOR ION CHEM STREAMS MAIN TO GEORGIA

$19.00
Available

Product Details

Product Number
334318
Series
SIR-2011-5151
Scale
NO SCALE
Alternate ID
SIR-2011-5151
ISBN
978-1-4113-3292-8
Authors
DENISE M ARGUE
Version Date
01/01/2012
Regions
WV, VT, VA, TN, PA, NY, NJ, NH, NC, ME, MD, MA, GA, CT
Countries
USA
Media
Paper
Format
Bound

Additional Details

Description
Abstract

An inventory of water-quality data on field parameters, major ions, and nutrients provided a summary of water quality in headwater (first- and second-order) streams within watersheds along the Appalachian National Scenic Trail (Appalachian Trail). Data from 1,817 sampling sites in 831 catchments were used for the water-quality summary. Catchment delineations from NHDPlus were used as the fundamental geographic units for this project. Criteria used to evaluate sampling sites for inclusion were based on selected physical attributes of the catchments adjacent to the Appalachian Trail, including stream elevation, percentage of developed land cover, and percentage of agricultural land cover.

The headwater streams of the Appalachian Trail are generally dilute waters, with low pH, low acid neutralizing capacity (ANC), and low concentrations of nutrients. The median pH value was slightly acidic at 6.7; the median specific conductance value was 23.6 microsiemens per centimeter, and the median ANC value was 98.7 milliequivalents per liter (μeq/L). Median concentrations of cations (calcium, magnesium, sodium, and potassium) were each less than 1.5 milligrams per liter (mg/L), and median concentrations of anions (bicarbonate, chloride, fluoride, sulfate, and nitrate) were less than 10 mg/L.

Differences in water-quality constituent levels along the Appalachian Trail may be related to elevation, atmospheric deposition, geology, and land cover. Spatial variations were summarized by ecological sections (ecosections) developed by the U.S. Forest Service. Specific conductance, pH, ANC, and concentrations of major ions (calcium, chloride, magnesium, sodium, and sulfate) were all negatively correlated with elevation. The highest elevation ecosections (White Mountains, Blue Ridge Mountains, and Allegheny Mountains) had the lowest pH, ANC, and concentrations of major ions. The lowest elevation ecosections (Lower New England and Hudson Valley) generally had the highest pH, ANC, and concentrations of major ions. The geology in discrete portions of these two ecosections was classified as containing carbonate minerals which has likely influenced the chemical character of the streamwater. Specific conductance, pH, ANC, and concentrations of major ions (calcium, chloride, magnesium, sodium, and sulfate) were all positively correlated with percentages of developed and agricultural land uses at the lower elevations of the central region of the Appalachian Trail (including the Green–Taconic–Berkshire Mountains, Lower New England, Hudson Valley, and Northern Ridge and Valley ecosections). The distinctly different chemical character of the streams in the central sections of the Appalachian Trail is likely related to the lower elevations, the presence of carbonate minerals in the geology, higher percentages of developed and agricultural land uses, and possibly the higher inputs of sulfate and nitrate from atmospheric deposition.

Acid deposition of sulfate and nitrate are important influences on the acid-base chemistry of the surface waters of the Appalachian Trail. Atmospheric deposition estimates are consistently high (more than 18 kilograms per hectare (kg/ha) for sulfate, and more than 16 kg/ha for nitrate) at both the highest and lowest elevations. However, the lowest elevation (Green–Taconic–Berkshire Mountains, Lower New England, Hudson Valley, Northern Glaciated Allegheny Plateau, and Northern Ridge and Valley ecosections) included the largest spatial area of sustained high estimates of atmospheric deposition.

Calcium-bicarbonate was the most frequently calculated water type in the Lower New England and Hudson Valley ecosections. In the northern and southern sections of the Appalachian Trail mix-cation water types were most prevalent and sulfate was the predominate anion. The predominance of the sulfate anion in the surface waters of the northern and southern ecosections likely reflects the influence of sulfate deposition. Although the central portion of the Appalachian Trail has the largest spatial area of high atmospheric acid deposition, the lower ionic strength waters in the northern and southern ecosections of the Appalachian Trail may have been more adversely affected by acid deposition.

The low ionic strength of the streams in the White Mountains, Blue Ridge Mountains, and Allegheny Mountains ecosections makes parts of these regions susceptible to seasonal or event-driven episodic acidification, which can be detrimental to health of aquatic and terrestrial ecosystems. Median catchment ANC values were classified into three groups—acidic, sensitive, and insensitive. The White Mountains, Blue Ridge Mountains, and Allegheny Mountains ecosections included the highest frequency of catchments classified as acidic or sensitive. More than 56 percent of the catchments from the White Mountains ecosection were classified as sensitive to acidic inputs. In the Blue Ridge ecosection, 1.6 percent of the catchments were classified as acidic, and 38.2 percent of the catchments were classified as sensitive to acidic inputs. In the Allegheny Mountains ecosection, 17.6 percent of the catchments were classified as acidic, and 29.4 percent of the catchments were classified as sensitive to acidic inputs.

Median concentrations of nitrogen species were less than 0.4 mg/L, and median concentrations of total phosphorus were less than 0.02 mg/L along the Appalachian Trail. A comparison of median catchment concentrations of nutrients to estimated national background concentrations demonstrated that concentrations along the Appalachian Trail are generally lower. A comparison of median concentrations of total nitrogen and total phosphorus to the U.S. Environmental Protection Agency’s (USEPA) nutrient criteria for the Eastern U.S. ecoregions showed that the concentrations of total nitrogen in the northern section of the Appalachian Trail were generally higher than the USEPA criterion. Similarly, median concentrations of total phosphorus in the southern regions of the Appalachian Trail were approximately twice as high as USEPA criteria. Sections of the Appalachian Trail are adjacent to modest amounts of agricultural and developed land areas. These nonforested land areas may be contributing to the percentage of catchments in which concentrations of total nitrogen and total phosphorus are higher than USEPA nutrient ecoregion criteria.

Print Date
2012
Height In Inches
11.000
Length In Inches
8.500
Two Sided
Yes
Pieces
2
Languages
English
Related Items
GROUNDWATER, WIND CAVE NATIONAL PARK, SD
Prepared in cooperation with the National Park Service <p> <p> Groundwater Flow, Quality (2007–10), and Mixing in the Wind Cave National Park Area, South Dakota
SHENANDOAH NATIONAL PARK, VA, 1979-2009
<p> Prepared in cooperation with the National Park Service <p> <p> Synthesis and Interpretation of Surface-Water Quality and Aquatic Biota Data Collected in Shenandoah National Park, Virginia, 1979–2009 <p>
METHODS ESTIMATING DROUGHT, VA STREAMS
Prepared in cooperation with the Virginia Department of Environmental Quality <p> <p> Methods for Estimating Drought Streamflow Probabilities for Virginia Streams <p>