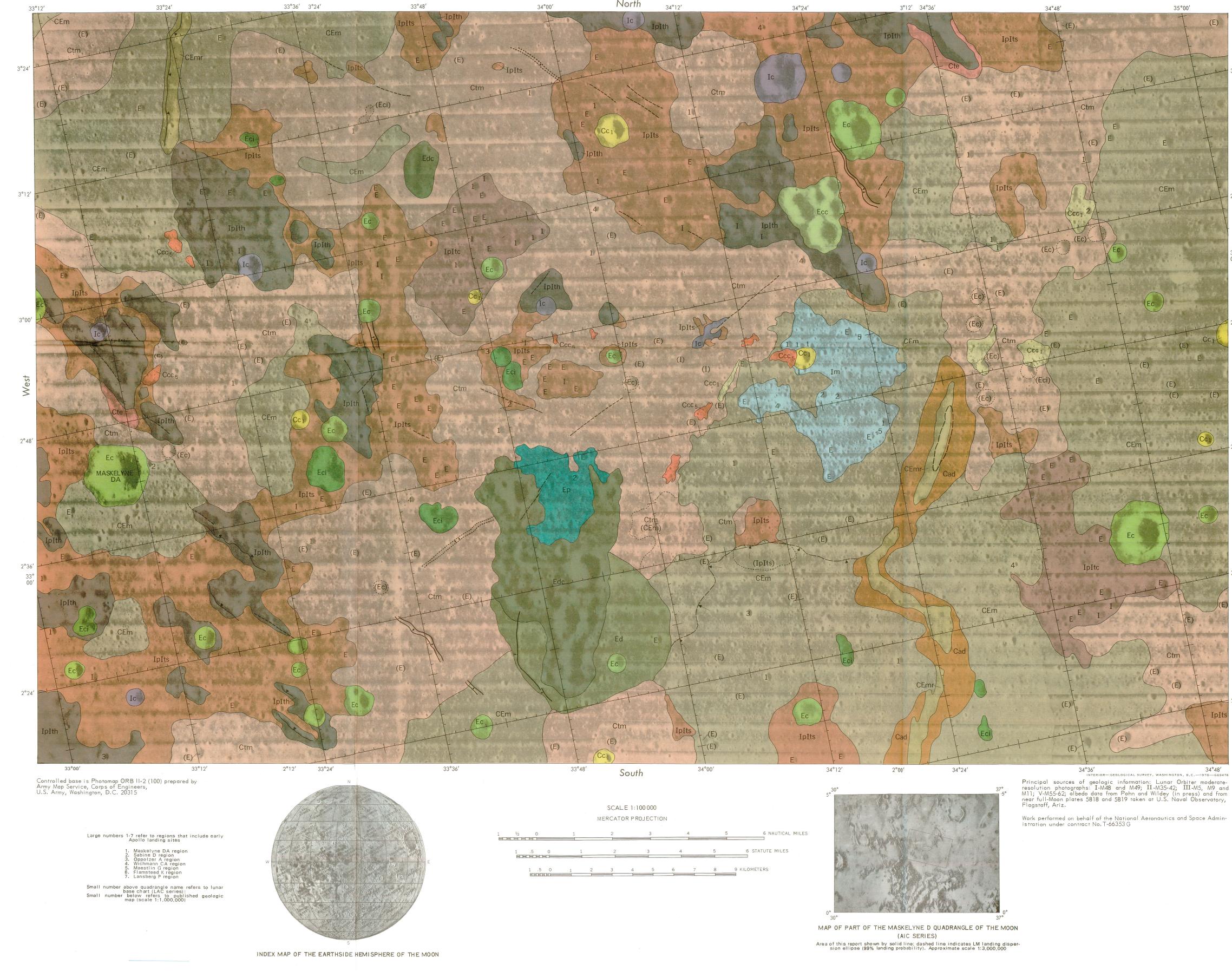
large cratered dome, possibly indicative of te-stage volcanism, occurs in the southern part of the region. Telescopically, the terrain over most of the region resembles hat of mare areas with intermediate albedo hence, at a scale of 1:1,000,000 the materials here were mapped as unit Ipm2 of the The terra materials in the central part of the region are part of a low circular plateau lies just to the north of the cratered dome, and the edge is marked by arcuate ridges and scarps best seen on moderate-resolution Orbiter V photographs. Most of the smoothest unit in the region (Ctm) lies on the plateau and a number of low domes and irregular craters (Eci) are associated with the struc-The terra comprises five units. Hilly terra

material (IpIth) forms features with the greatest relief: intersecting large craters 500 m), low hills, and northwest-trending ridges. Few smaller craters are present. second unit, terrace material (Cte), occurs at the bases of the more prominent ridges and probably is an accumulation of debris hat has moved down the steep slopes of the ridges. The unit is separated from hill terra (IpIth) by a sharp break in slope. third terra unit, smooth terra material (IpIts resembles unit IpIth but has less relief. Th terrain consists of low rounded hills, shallow depressions, and faint ridges. Large (> 500 m) degraded craters are common. Unit IpIts grades imperceptibly into unit IpIth as the positive relief elements become more prominent and into a fourth terra unit, terra-mantlin material (Ctm), as the relief elements disfifth unit, cratered terra material (IpItc resembles the smooth terra unit but is more illitatis and Nectaris basins. However ejecta blankets have long since been erased by erosion and faulting. Movement along and valleys, probably long after the Tranquil litatis and Nectaris basins formed. ridges are radial to Mare Imbrium and cou have formed contemporaneously with the Imbrium basin. All three of the oldest units are deficient in small craters and are probably covered with a thick impact-generated ragmental layer. They may be thinly covered


The terra-mantling unit (Ctm) is the smoothest unit in the area and combines many of e features of both terra and mare. Almost flat and level like the mare, the unit is distinguished by slightly higher albedo and very low positive relief features (vestig of old craters and linear ridges). It has less relief than the other terra units and fewe craters than any other unit. The few large craters (> 500 m) are very shallow and have flat floors. The unit is interpreted to consist of a slightly cohesive mixture of fragmenta volcanic debris, colluvium, and impac ejecta. Colluvium may predominate around positive relief features; volcanic debris elsewhere. The paucity of craters may result partly from the youth of the material and partly from its lack of cohesion; because f the latter, impacts produce rounded ubdued craters that are rapidly degraded The unit is thin where remnants of old craters and ridges protrude above the surface. The mare material has been divided into (Im) and moderately cratered mare (CEm). In addition to being more heavily cratered, unit Im has a greater proportion of sharp, fresh craters (50-200 m), and its crater populatio includes all gradations between fresh craters and shallow subdued ones. In contrast, few fresh-appearing craters occur in the moderately cratered mare, and nearly all the large ones (> 500 m) are shallow pan-shape depressions; very few rimmed bowl-shaped craters are present. Differences in the crater frequencies of the two mare units probabl result largely from difference in age. However, lithology may also affect crater frequencies. The lower frequency of very fresh, blocky rayed craters in unit CEm would not result solely from an age difference unless unit CEm were extremely young, younger even than many of the fresh blocky craters, which is unlikely. Unit CEm may be less cohesive than unit Im, so that new craters in the former are more rounded and more rapidly eroded. The large pan-shaped craters i unit CEm may be thinly covered craters of an older terrain. Two mare ridges occur within the region.

The one in the east half is bordered by very smooth, sparsely cratered material with low albedo. Mapped as dark apron material (Cad) the terrain around the ridge resembles tha on unit Ctm except that the albedo is lower. Two domes occur within the region. Asso ciated with the broad, low dome in the south central part of the region are the remnant of a crater chain and a dense cluster of craters. The smaller dome in the north-central part of the region has a central cleft. Both domes probably represent near-surface laccolithic intrusion, and the associated craters are The potential Apollo landing site in this region is unique in two respects. Firstly unit Ctm is the smoothest, least cratered init observed anywhere in the equatorial belt and presents problems in interpretation a very young age, and the unit may be largel nic in origin. Examination of the materia would shed light on the nature of the processes resulting in deposition of widespread regional units on the terra. Secondly, several young volcanic features are present in the site, the cratered dome in the south-central part being the most prominent example. Such eatures may aid in understanding lunar

REFERENCES

Pohn, H.A., and Wildey, R.L., in press, A photoelectric-photographic map of the normal albedo of the Moon: U.S. Geol. Survey Prof. Paper 599-E. Wilhelms, D.E., 1965, Preliminary geologic map of the Taruntius quadrangle of the Moon, in Astrogeol. Studies Ann. Prog. Rept., July 1964-July 1965, map supp.:
U.S. Geol. Survey open-file report.

1969, Geologic map of the Apollo landing site 1 [scale 1:25,000]: U.S. Geol. Survey Misc. Geol. Inv. Map I-617.

EXPLANATION

NOTE: A crater's materials are mapped according to the size (rim crest diameter) and interpreted relative age of the crater. The apparent freshness of the crater on Orbiter photographs is used to determine its age, and allowance is made for an inverse relation between the sizes and rates of degradation of craters (see enclosed pamphlet). The larger craters in each age group are mapped in color (mappable materials extend relatively farther from the rim crests of young craters than from the rim crests of old craters f comparable size). The map symbols that identify these materials consist of a capital letter to designate case letters to designate rock unit, and, in the Copernican System, a subscript number to designate relative age within that system. To keep the map from becoming crowded, materials of the smalle craters in each age group are not outlined; such craters are indicated by number or letter symbo only. For example, materials mapped as Cc1, out ined, and colored are associated with a relatively old Copernican crater more than 600 m (meters) in diameter; materials designated simply 1 are the same age but are associated with craters from 400 to 600 m in diameter. The mapping is extended to smaller size craters for younger craters than for older craters; the smallest craters in all age groups are unmapped.

other clusters mapped

field in some other

more subdued and are

assigned ages equiva-

lent to Cc₃ and Cc₄

Crater-cluster material

Material in and around

craters. Craters range

Material of clusters of

raters probably formed

by the impact of ejecta

dicates inferred age of

merical subscript in

in size from 80 to 300

m. Albedo similar to

Characteristics

Crater material Crater-cluster material Characteristics Material in and around clusters of sharp craters. Most craters are small (< 50 m). Albedo is higher than that of surrounding materials Material of clusters of

Material of rayed cra strewn hummocky rims Terraces and blocks present on wall. Crater rim crest sharp craters probably formed from Tycho although

Crater material Material of craters have ing rim deposits that appear brighter than blocks on rim. Terraces may be present on walls. Slightly subdued

rim crest Crater material Material of crater hav ing rim deposits that appear only as bright

Characteristics or slightly brighter than surroundings. Few blocks on rim. Rim moderately subdued

Crater material

Characteristics Material of craters hav ing smooth rim deposits that appear only as brigh Blocks sparse on rin

Rim crest moderatel

Crater material Cc₁, material of rav less craters having smooth rim deposits Blocks sparse on rim out more common on wall of some craters Crater rim crest round ed and moderately 1, materials of rayles: craters having smoot. moderately to strongly subdued rims. No

terraces present of

wall. Crater rim crest

Dome-crater material with a crater chain and cluster of large craters on the dome in

continuing

Dome material Material occurs on broad low dome in the south-central part face of the dome resembles that of unit Ctm Contact is drawn at he break in slope between the dome and the surrounding terrain May represent volcanic extrusion or near-surtruded, the near-sur-

of the region. Also structure with central in the northregion. Craters have low rounded rims. Patterned ground on steep Material s from volcanic craters. Probably vol-

Terrace material

Occurs at the base of

only where contact is

steep slopes. Mapped

gently sloping with

anastomosing ridges

and troughs approxi-

mately 10 m wide and

several meters high).

ruptly against adjacent

Apron of debris that

has accumulated at the

as a result of mass

wasting. Consists of

fragmental debris. Pro

cess of formation stil

units with sharp break

terminates ab

Characteristics

canie debris reworked by successive impact

Irregular-crater Characteristics

Dark apron material

Occurs around a mare

smooth topography

unit Ctm but albedo is

Origin obscure, In

derived by downslope

f the region. Has

Characteristics

much lower

Interpretation

movement

Materials associated

rregular outlines Craters may be remnants of mutually intersecting secondary craters or may be

Crater-cluster material

cluster of large bowlwith craters that have east-central part o the region. Albedo rounding materials Origin uncertain. Size impact origin. May be

Material in and around Ec. material of ravless shaped craters in the

crater with smooth rim and rounded rim crest. Rim distinctly stands well above E, material of rayless rim, rounded rim crest, and shallow internal slopes. Rim barely stands above surrounding terrain

Crater material Ic, material of subdued bowl-shaped craters rim and rounded rim

crest. Craters have and shallower depth than Ec craters of

I, material of gentle cernible rim Interpretation of Crater Materials

(Cc₁, Ec, Ic; 5-1, E, I) Materials of craters tha are probably mostly o impact origin. Craters are assigned letters or numbers according t relative age. Numbered craters are the younges and the higher the num-ber the younger the crater. Since the rate of crater destruction and the initial crater morphology may be different in different units the assigned ages are only approximate. In younger craters, shock-metamorphosed fragmental debris forms rims and walls. Highly shocked bedrock

may be exposed on walls. Material associated with guishable from surrounding materials

Terra material

IpIth, hilly terra material. Forms most of the high ground in the region and occurs most extensively in the west half. Terrain characterized by northwest trending ridges and low rounded hills. Patterned ground occurs in most areas. Large craters (>500 m) more common than on mare units IpIts, smooth terra material. Similar to unit IpIth but has less relief. Has low rolling topography and large shallow rounded craters. Occurs mostly adjacent to areas of unit IpIth and grades imper-

IpItc, cratered terra material. Similar to unit IpIts

but more craters in the size range 100 to 500 m

Terra-mantling material

Largest extent in the west half of the region. Albedo

intermediate; higher than that of unit CEm. Unit

forms a low undulating surface having areas of low

IpIts as the positive relief elements become more

numerous and into mare material as the positive

elements decrease in number and craters become

more common. Fewer craters between 50 and 200 m

than in the mare materials. Fresh blocky craters larger than 100 m are absent and craters larger

an 500 m are mostly shallow rimless depressions

Smoothest unit in the region and one of the smoothest

Slightly cohesive fresh volcanic debris mixed with

colluvium and impact ejecta. Overlies an old cratered

terrain. Some of the large shallow craters are partly

buried craters of the underlying terrain and some

areas of positive relief are areas where the unit is

thin. The paucity of craters results from the youth

the unit and the lack of small blocky craters

Interpretation

face fragmental layer

ing material; if intruded

the material exposed

at the surface is

rounding material

may differ in composi-

tion from the surround-

recognized anywhere on the Moon

results from the low cohesion

Pitted material

north of the dome cra

ters(Edc) in the south-

region. Forms gently

rolling topography and

250 m. Many subdue

into hilly and gently

Probably indurated ash

and lava of volcanic

ered with a thin frag-mental layer. Vol-canism related to for-

Wilhelms (1969)

mation of dome

terpretation

itive relief. Grades imperceptibly into unit

Characteristics

Oldest materials exposed in the region. May be remnants of ejecta blankets around Nectaris and Tranquillitatis basins. Thick surficial fragmental layer results in relatively rapid downslope movement of near-surface material with consequen destruction of small craters and filling of deprespIth includes the features with most positive relief Relief caused by cratering or faulting filled, probably with debris from adjacent slopes, so both units have low relief. They may be covered

GEOLOGIC MAP OF THE MASKELYNE DA REGION OF THE MOON

LUNAR ORBITER SITE II P-2, SOUTHEASTERN MARE TRANQUILLITATIS INCLUDING APOLLO LANDING SITE 1

Michael H. Carr

Contact evident from surface topography. Buried unit shown in parentheses

Mare ridge material

Forms low linear ridges

on the mare. Flanks

of ridges smooth and

Site of volcanic intru-

north-trending ridge

in southeast corner

of the site may be

thinly covered terra

surrounding mare

Moderately cratered

mare material

Has largest extent in

to intermediate, lower

and Im. More craters

between 50 and 200 m

total craters and

fewer fresh blocky cra-

ters in the same size

range than in unit Im.

Craters larger than

500 m are mostly pan-

ately cratered mare material and smooth

Probably volcanic flow

pan-shaped craters are

craters that formed in

shown as buried where

shallow and pan-shaped but shown as

exposed where bowl-

shaped. Unit not every-

but ranges from Eratos-

thenian to Copernican. Paucity of blocky cra-

is less cohesive than

unit Im. Burial of older

craters indicates thick

ness ranges from 50

Heavily cratered mare material

intermediate; slightly higher than unit CEm. The low hills and shallow slopes that characterize Ctm

south of a prominent terra ridge (IpIth,

Characteristics

than unit CÉm

racteristics
only occurrence near the center of the region just the region function of the region function of the region function of the region function of the region of the region function of the region of the r

re absent; all relief features are craters. More

heavily cratered and has a higher proportion of

fresh blocky craters in the 50 to 200 m size range

Old mare material. Probably strongly cohesive volcanic tuff deposits or flows covered by a layer

of fragmental debris. Blocks are visible around

craters as small as 40 m suggesting that the near-surface fragmental layer is less than 15 m thick

ers suggests material

where the same age

obably remnants of

mare material Wilhelms (1969)

Characteristics

Fault Dotted where buried. Bar and ball on apparent downthrown side

Contact

(Ec)

Buried contact

Gentle sinuous scarp Arrows point downslope. Marks gentle north-facing scarp in unit CEm in south-central part of the site Albedo slightly lower south of scarp. Material immediately south of scarp resembles unit Cad. Probable flow front

Scarp Barbs point downslope. Marks sharp break in slope within geologic unit

Lineament

Gentle linear depression. Probable fault or fracture

Block field particularly numerous on the surface. Blocks also occur around mapped craters with numbers higher than 2 but are not shown at this scale